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Abstract

We describe new capabilities for modeling bilevel programs within the Pyomo modeling
software. These capabilities include new modeling components that represent subproblems,
modeling transformations for re-expressing models with bilevel structure in other forms, and
optimize bilevel programs with meta-solvers that apply transformations and then perform op-
timization on the resulting model. We illustrate the breadth of Pyomo’s modeling capabilities
for bilevel programs, and we describe how Pyomo’s meta-solvers can perform local and global
optimization of bilevel programs.
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1 Introduction

Many planning situtations involve the analysis of several objectives that reflect a hierarchy of
decision-makers. For example, policy decisions are made at different levels of a government, each
of which has a different objective and decision space. Similarly, robust planning against adversaries
is often modeled with a 2-level hierarchy, where the defensive planner makes decisions that account
for adversarial response.

Multilevel optimization techniques partition control over decision variables amongst the levels.
Decisions at each level of the hierarchy may be constrained by decisions at other levels, and the
objectives for each level may account for decisions made at other levels. In practice, multilevel
problems have proven difficult to solve, and most of the literature has focused on bilevel programs,
which model a 2-level hierarchy [2].

Although multilevel problems arise in many applications, few algebraic modeling languages
(AML) have integrated capabilities for expressing these problems. AMLs are high-level pro-
gramming languages for describing and solving mathematical problems, particularly optimization-
related problems [9]. AMLs provide a mechanism for defining variables and generating constraints
with a concise mathematical representation, which is essential for large-scale, real-world problems
that involve thousands or millions of constraints and variables. GAMS [5], YALMIP [10] and Py-
omo provide explicit support for modeling bilevel programs. A variety of other AMLs support the
solution of bilevel programs through the expression of KKT conditions and associated reformula-
tions using mixed-complementarity conditions, but these reformulations must be expressed by the
user in these AMLs.

In this paper, we describe new functionality in Pyomo 4.3 for expressing and optimizing mul-
tilevel models in the Pyomo modeling environment. Pyomo is an open-source software pack-
age that supports the definition and solution of optimization applications using the Python lan-
guage [12, 11, 7, 8]. Python is a powerful programming language that has a clear, readable syntax
and intuitive object orientation. Pyomo uses an object-oriented approach for defining models that
contain decision variables, objectives, and constraints.

The main point of this paper is to demonstrate that Pyomo provides an intuitive syntax for ex-
pressing multilevel optimization problems. Multilevel models can be easily expressed with Pyomo
modeling components for submodels, which can be nested in a general manner. Further, Pyomo’s
object-oriented design naturally supports the ability to automate the reformulation of multilevel
models into other forms. In particular, we describe Pyomo’s capabilities for transforming bilevel
models for several broad classes of problems. We describe Pyomo meta-solvers that transform
bilevel programs into mixed integer progrms (MIP) or nonlinear programs (NLP), which are then
optimized with standard solvers.

The remainder of this paper is organized as follows. Section 2 describes motivating classes of
bilevel programming problems. Section 3 describes how Pyomo supports modeling of submodels.
Sections 4 and 5 describe transformations that automate the reformulation of bilevel programs and
meta-solvers in Pyomo that leverage these transformations to support global and local optimiza-
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tion of bilevel programs. Section 6 discusses Pyomo’s ability to model multilevel problems, and
possible extensions for non-cooperative bilevel programs.



2 Motivating Problems

In multilevel optimization problems, a subset of decision variables at each level is constrained to
take values associated with an optimal solution of a distinct, lower level optimization problem. For
example, a general formulation for bilevel programs is

minxeX,y F(x>y>
s.t. G(x,y) <0 (1
y € P(x)

where .
P(x) = argmin,y f(x,y)
g(x,y) <0

P(x) defines a lower-level problem, which may have multiple solutions. Here x is the primary
upper-level decision, and y is the anticipated lower-level decision.

When P(x) contains multiple solutions, this formulation ensures that the selected value for y
will minimize F(x,y). Consequently, this formulation has been called optimistic or cooperative,
since the selection of the lower-level decision variables minimized the upper-level objective. Most
research on bilevel programming has considered this problem, since this formulation has an opti-
mal solution under reasonable assumptions.

The following subsections describe specializations of Equation (1) that will be explored in
greater detail throughout this paper. These are well-studied classes of bilevel programs that that
can be reformulated into other canonical optimization forms.

2.1 Linear Bilevel Programs with Continuous Variables

Multilevel linear programming considers the case where decision variables are continuous, and
both objectives and contraints are linear. In the 2-level case, we have the following linear bilevel
program:

min,, clx+dly

s.t. Ax+ By < b

x>0

min, cg x+d2T y 2)
Axx+ By < by
y=0

2.2 Quadratic Min/Max

Consider the case where the lower-level decisions y do not constrain the upper-level decisions. Let

X={x|Ax<b,x>0}
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Then we have r r r
min,ey maxy,>o cjx+d;y+x Qy

Axx+ By < by G)

In our discussion below, we allow the x; to be binary without loss of generality.
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3 Modeling Bilevel Programs

3.1 Pyomo Models

Pyomo supports an object-oriented design for the definition of optimization models. The basic
steps of a simple modeling process are as follows:

1. Create model object and declare components
2. Instantiate the model
3. Apply solver

4. Interrogate solver results

In practice, these steps may be applied repeatedly with different data or with different constraints
applied to the model. However, we focus on this simple modeling process throughout this paper.

A Pyomo model consists of a collection of modeling components that define different aspects
of the model. Pyomo includes the modeling components that are commonly supported by mod-
ern AMLs: components for decision variables, objectives and constraints are used to express the
model, and components for index sets and symbolic parameters are used to manage data used
in model expressions. These modeling components are defined in Pyomo through the following
Python classes:

Var decision variables in a model

Objective expressions that are minimized or maximized in a model
Constraint constraint expressions in a model

Set set data that is used to define a model instance

Param parameter data that is used to define a model instance

Modeling components are directly added to a Pyomo model object as an attribute of the object.
For example:

model = ConcreteModel ()
model.x = Var()

Pyomo defines two model classes: ConcreteModel and AbstractModel. In concrete models,
components are immediately initialized when they are added to the model. In abstract models,
components are explicitly initialized later, which allows the creation of multiple model instances
from a single abstract model.

Another Pyomo component is the Block class, which defines a named collection of model
components. Blocks provide a convenient mechanism for segregating different elements of a model
within separate namespaces, and they can be used to define repetitive model structure in a concise
manner. For example, the following model defines two variables x:

11



model =
model.
model.
model.

o o X

ConcreteModel ()
= Var ()
Block ()

.x = Var()

Block b defines a namespace that allows these two variables to be uniquely referenced.

3.2 Modeling Bilevel Programs

The pyomo.bilevel package extends Pyomo by defining a new modeling component: SubModel.
The SubModel component defines a subproblem that represents the lower level decisions in a
bilevel program. This component is like a Block component; any components can be added to a
SubModel object. In general, a submodel is expected to have an objective, one or more variables

and it may define constraints.

The SubModel class generalizes the Block component by including constructor arguments that
denote which variables in the submodel should be considered fixed or variable. When expressions
in a submodel refer to variables defined outside of the submodel, the user needs to indicate whether
these are fixed values defined by an upper-level problem. Fixed variables are treated as constants
within the submodel, but non-fixed variables are defined by the current submodel or by a lower-
level problem.

Consider the following example:

ming,, x+y-+v

x+v>1.5

1<x<2

1<v<2

maxy,,, X+w
y+w<25
1<y<2
1<w<2

12
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The following Pyomo model defines four variables, x, v, sub.y and sub.w:

from pyomo.environ import *
from pyomo.bilevel import *

model = ConcreteModel ()

model.x = Var (bounds=(1,2))
model.v Var (bounds=(1,2))
model.sub = SubModel ()
model.sub.y = Var (bounds=(1,2))
model.sub.w = Var (bounds=(-1,1))

model.o = Objective (expr=model.x + model.sub.y + model.v)

model.c = Constraint (expr=model.x + model.v >= 1.5)

model.sub.o = Objective (expr=model.x+tmodel.sub.w, sense=maximize)
model.sub.c = Constraint (expr=model.sub.y + model.sub.w <= 2.5)

Variables x and v are declared in the upper-level problem, and v only appears in the upper-level
problem. Variables sub.y and sub.w are declared in the submodel. However, note that the sub.y
variable appears in the upper-level problem, while the sub.w variable only appears in the lower-
level problem.

These modeling capabilities are quite general. Expressions in submodels can be linear or non-
linear, convex or nonconvex, continuous or discontinuous, and more. Additionally, submodels can
be nested to an arbitrary degree. Thus, the range of bilevel programs that can be expressed with
Pyomo is quite broad. However, the real challenge is solving these models. The following sec-
tions describe two general strategies for solving the two classes of bilevel programs described in
Section 2.

In each section we describe model transformations and their use in meta-solvers. Pyomo’s
object-oriented design supports the structured transformation of models. Pyomo can iterate through
model components as well as nested model blocks. Thus, model components can be easily trans-
formed locally, and global data can be collected to support global transformations. Further, Pyomo
components and blocks can be activated and deactivated, which facilitates in place transformations
that do not require the creation of a separate copy of the original model.
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4 Solving Linear Bilevel Programs

We consider the formulation for linear bilevel programs described in Equation (2):

min, y c]Tx—l—ley
s.t. Ax+ By < by

x>0

min, cg x+d2T y 2)
Axx+Byy < by
y=0

Following Bard [1], we can replace the lower-level problem with corresponding optimality condi-
tions. This transformation gives the following model:

min c{x%—d{y

st. Aix+Biy<b;
dz—i-BzTu—v:()
by—Ax—Byy>01Lu>0
y>01Lv>0
x>0,y>0

(&)

This transformation results in a mathematical program with equillibrium constraints (MPEC).

Pyomo’s pyomo.bilevel package automates the application of this model transformation. For
example, if model defines an linear bilevel program, then the code applies this transformation to
change the model in place:

xfrm = TransformationFactory(’bilevel.linear_mpec’)
xfrm.apply_to (model)

The bilevel.linear mpec transformation modifies the model by creating a new block of vari-
ables and constraints for the optimality conditions in the lower-level problem.

A variety of solution strategies can leverage this transformation to support optimization. Py-
omo defines two meta-solvers, which apply the bilevel.linear mpec transformation and then
perform optimization with a third-party solver.

Consider the following problem, which is Example 5.1.1. in Bard [1]:

minx7y X — 4y

x>0
s.t. minyy
S.t. —x — y < =3 (6)
2x + y < 0
2x + y < 12
3x — 2y < 4

Note that the last constraint in this example is negated from the text in Bard [1]; this corrects an
error in the example, which is reflected in Bard’s discussion of the solution to this example. The
Pyomo model for this problem is:

15



# bard511.py

from pyomo.environ import *
from pyomo.bilevel import *

M = ConcreteModel ()

M.x = Var (bounds=(0,None))
M.sub = SubModel ()

M.sub.y = Var (bounds=(0,None) )

M.o = Objective(expr=M.x - 4*M.sub.y, sense=minimize)
M.sub.o = Objective (expr=M.sub.y, sense=minimize)
M.sub.cl = Constraint (expr=- M.x - M.sub.y <= -3)
M.sub.c2 = Constraint (expr=-2*M.x + M.sub.y <= 0)
M.sub.c3 = Constraint (expr= 2*M.x + M.sub.y <= 12)
M.sub.c4 = Constraint (expr= 3*M.x - 2*M.sub.y <= 4)
model = M

4.1 Global Optimization

Following Fortuny-amat and McCarl [4], Pyomo’s bilevel blp_global meta-solver chains to-
gether reformulations to generate the following sequence of models:

BLP = MPEC = GDP = MIP,

where GDP refers to generalized disjunctive programs. Note that this leverages advanced modeling
capabilities in Pyomo for MPEC [6] and GDP [13].

Pyomo provides general support for solving MIPs with commercial and open-source solvers.
The bilevel blp_global meta-solver applies these transformations, solves the resulting MIP, and
translates the MIP solution back into the original linear bilevel program. The result is a globally
optimal solution. For example, the pyomo command can be used to execute the mpec blp_global
solver using a specified MIP solver:

pyomo solve --solver=bilevel_blp_global \
--solver-options="solver=glpk" bard5ll.py

Note that a “Big-M” transformation is used to convert the GDP model into a MIP. The default M
value is very large, which may make it difficult to solve the resulting MIP problem. Hence, this
solver includes a bigM option that can be used to specify a problem-specific value:

pyomo solve --solver=bilevel_blp_global \
--solver-options="bigM=100 solver=glpk" bard51l.py
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4.2 Local Optimization

Pyomo’s bilevel blp_local meta-solver chains together reformulations to generate the follow-
ing sequence of models:
BLP = MPEC = NLP.

This leverages model transformations in pyomo . gdp to transform an MPEC into an NLP through a
simple nonlinear transformation adapted from Ferris et al. [3]. For example, the complementarity
condition

y>0Lw>0

is transformed to the constraints
y=0

w>0
yw < E.

Pyomo provides general support for solving NLPs with commercial and open-source solvers.
The bilevel blp_local meta-solver applies these transformations, solves the resulting NLP, and
translates the solution back into the original linear bilevel program. In general, the result is a locally
optimal solution. For example, the pyomo command can be used to execute the mpec blp_local
solver using a specified NLP solver:

pyomo solve --solver=bilevel_blp_local \
--solver-options="solver=ipopt" bard5l1.py

Note that the tolerance value € is initially set to a small value, which some solvers may have
difficulty with. This value can be explicitly set with the mpec_bound option:

pyomo solve --solver=bilevel blp_local \
--solver-options="mpec_bound=0.01 solver=ipopt" bard5ll.py
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5 Solving Quadratic Min-Max Bilevel Programs

We consider the formulation for quadratic min-max bilevel programs described in Equation (3):

min,cy Mmax,>o clTx + ley +xTQy

Axx+Byy <b; )

where
X ={x|Ax <b,x>0}.

The lower-level problem is linear, so we can replace the lower-level problem with corresponding
optimality conditions. Since, the objectives are opposite and the upper-level constraints do not
constrain the lower level decisions, we get a single minimization problem. This transformation
gives the following model:
min ¢l x+ (b —Axx)Tv
S.t. BZTV >di + QTx
Aix < by
x>0,v>0

In Pyomo, this is implemented as the bilevel.linear_dual transformation.

(7

If A, =0, then the lower-level problem does not constrain the upper-level decisions. This
is a simple case, where the transformation generates a linear program if the upper-level decision
variables x are continuous and a MIP if some or all of the x are binary.

More generally, suppose that the upper-level decision variables x are binary and A, #Z 0. We can
linearize the quadratic terms in the objective using gdp.bilinear transformation, which creates
the following disjunctive representation:

min clTx+ szv —177
st. Blv>d +0QTx
Alx S bl

xi=0 A x,~:l (8)
zi=0 zi = AL (x,i)v
x; >{0,1},v>0

Subsequently, this GDP can be transformed into a MIP using a Big-M transformation.

Consider the following network interdiction problem, for which an attacker eliminates links in
a network to minimize the maximum flow through the network from a fixed source s to a fixed
destination 7. Let N be the nodes in the network through which flow occurs. Let y;; be a variable
that indicates flow from node i to node j, and let c;; be the maximum capacity on that arc. The
attacker selects b variables x;;; if x;; is one then the arc is removed. This network interdiction
problem can be written as:

mingcy max, 1

YieNYin =Y jenYnj VnEN (flow balance constraint)
N < YienVsj (node s flow) 9
N < YienVi (node t flow)

0<y;j<t;j(1—x;;) Varcs(i,j) (capacity constraint)
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where

X = {x | xij € {0,1},) xij < b}.

L,j
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The following Pyomo model describes this bilevel program:

# interdiction.py

from pyomo.environ import *
from pyomo.bilevel import *
from interdiction_data import A, budget

M = ConcreteModel ()

M.x = Var(A.keys (), within=Binary)

M.budget = Constraint (expr=summation (M.x) <= budget)
M.sub = SubModel ()

M.sub.f = Var()

M.sub.y = Var(A.keys (), within=NonNegativeReals)

# Min/Max objectives
M.o = Objective (expr=M.sub.f, sense=minimize)
M.sub.o = Objective (expr=M.sub.f, sense=maximize)

# Flow constraint
def flow_rule(M, n):
return sum(M.y[i,n] for i in sequence(0,4) if (i,n) in A) ==\
sum(M.y[n,j] for j in sequence(l,5) if (n,3j) in A)
M.sub.flow = Constraint (sequence(l,4), rule=flow_rule)

# Source constraint
def s_rule(M):

model = M.model ()

return model.sub.f <= sum(M.y[0,j] for j in sequence(l,4) if (0,j) in A)
M.sub.s = Constraint (rule=s_rule)

# Destination constraint
def t_rule(M):

model = M.model ()

return model.sub.f <= sum(M.y[],5] for j in sequence(l,4) if (j,5) in A)
M.sub.t = Constraint (rule=t_rule)

# Capacity constraint
def c_rule(M, i, j):

model = M.model ()

return M.y[i,j] <= A[i,j]1*(l-model.x[1, 7]
M.sub.c = Constraint (A.keys (), rule=c_rule)

model = M

In this example, the file interdiction_data.py defines a simple network with 6 nodes (including
s and t), adapted from an example by Will Traves:
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Pyomo’s bilevel_ld meta-solver applies the bilevel.linear_dual transformation and then
applies subsequent transformations when A, # 0.

pyomo solve --solver=bilevel_1d\
--solver-options="bigM=100 solver=glpk" interdiction.py

Note that this solver includes a bigM option that can be used to specify a problem-specific value
when a MIP is generated from a GDP.
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6 Discussion

Note that Pyomo’s ability to model multilevel optimization problem extends far beyond the bilevel
programs that are currently supported. For example, declarations of SubModel can be arbitrarily
nested with clear semantics. For example, consider the following trilevel model [14]:

miny, . x—4y+2z
s.t. —x—y< -3
—3x+2y—z>-10

miny, xX+y-—z
s.t. —2x+y—2z< -1
2x+y+4z<14

min, x—2y—2z
S.t. 2x—y—2z7<2

The following model illustrates how this trilevel model could be implemented in Pyomo:

from pyomo.environ import *

from pyomo.bilevel import *

M = ConcreteModel ()

M.x = Var()

M.s = SubModel ()

M.s.y = Var()

M.s.s = SubModel ()

M.s.s.z = Var()

M.o = Objective (expr= M.x - 4*M.s.y + 2*M.s.s.z)

M.cl = Constraint (expr= - M.x - M.s.y <= -3)
M.c2 = Constraint (expr= -3*M.x + 2*M.s.y >= -10)
M.s.o = Objective (expr= M.x + M.s.y - M.s.s.z)

M.s.cl = Constraint (expr=-2*M.x + M.s.y - 2*M.s.s.z <= -1)
M.s.c2 = Constraint (expr= 2*M.x + M.s.y + 4*M.s.s.z <= 14)
M.s.s.o = Objective(expr= M.x - 2*M.s.y - 2*M.s.s.z)
M.s.s.c = Constraint (expr=2*M.x - M.s.y - M.s.s.z <= 2)
model = M

Pyomo use of object-oriented model specification makes it fundamentally different from the
specification of bilevel models in GAMS and YALMIP. Both GAMS and YALMIP allow users to
specify expressions for variables, objectives and constraints, and then the users specifies which of
these are associated with an upper-level or lower-level problem. This design allows users to mix-
and-match different modeling components in a flexible manner. However, it is limited to a strictly
bilevel form. By contrast, Pyomo submodels can be nested in an arbitrary manner. This includes
multilevel models, as was just illustrated. But it also allows for the specification of a tree of nested
submodels. For example, Pyomo supports the specification of independent submodels at the same
level, which can be used to model a single agent cooperating with decisions for two independent
agents that make subsequent decisions..
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Earlier, we noted that Pyomo supports optimistic or cooperative bilevel models. It seems rela-
tively straightforward to extend Pyomo’s current semantics to support pessimistic bilevel models.
For example, a pessimistic constructor option could be added to the SubModel component. This
capability will be added when transformations and/or solvers are added to Pyomo for these bilevel
models.
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